ATTACK CLASS: ADDRESS SPOOFING

L. Todd Heberlein

Net Squared
4324 Vista Way
Davis, CA 95616

Matt Bishop

Department of Computer Science
University of California
Davis, CA 95616

Abstract

We present an analysis of a class of attacks we call address spoofing.
Fundamentals of internetwork routing and communication are
presented, followed by a discussion of the address spoofing class. The
attack class is made concrete with a discussion of a well known
incident.  We conclude by dispelling several myths of purported

security solutions including
PaSSWOrds.

1 Introduction

Recently we began analyzing known
vulnerabilities and attacks for the purpose of
modeling them. We believe a sufficiently
complete model will allow us to both predict
new instances of general attack classes and
build generic schemes for detecting
exploitations of general vulnerability classes.
This paper discusses one vulnerability/attack
class we call address spoofing.

Many of today's network services use
host names or addresses for both
identification and authentication. A system
using such a service composes a message
and sends the message to the service on a
remote system. The scrvice on the remote
system allows or disallows the request solely
on the sender's address included in the
request. For cxample, a remote login may
be allowed without formal authentication
(e.g., no password is required) if that remote
login is coming from a "trusted" host. Table
1 describes some of the services using the
senders address for authentication. Many
higher level network services (e.g., network
back-ups) are built on these vulnerable
services thereby inheriting or extending their
risks.

Unfortunately, addresses were not
designed to provide authentication, and an
adversary can take advantage of this fact by
forging an artificial request. This paper

371

security provided by one-time

explores how, why, and wunder what
conditions an adversary can exploit services
using address-based authentication.
Following a discussion of the problem in the
most general sense, we present a specific
example of such an attack. Finally, we will
conclude by answering some of the
questions surrounding this problem.

2 Background Fundamentals

In order to more fully understand
why and how address spoofing can be
performed, we first cover some of the basics
of communication and routing. These basic
properties will be used to characterize an
adversary's capabilities and strategics.

2.1 Connectionless vs.
Connection-oriented Communication

As mentioned in the previous
section, an adversary exploits the services of
interest by forging a message; however,
before we can define what a "message"” is, we
must examine some of the fundamentals of
network communication.

Communication across a network
falls into two broad categories:
connectionless and  connection-oriented
communication. In connectionless
communication, typically supplied by a
protocol layer such as UDP, no state
information about previously exchanged
information is kept. If a process wants to



SERVICE EXPLANATION

r* commands remote login, remote shell, remote copy, etc.; host
address can provide authentication by .rhosts and
hosts.equiv files.

mountd file system mounting; host address is used to allow
access and access rights. Host access is usually
specified in a file called something like /etc/exports.

TCP/UDP wrappers wrappers around network services; wrappers are
often used to deny access except to a few hosts to
network services. [P access/restriction can be set in
specific configuration files.

firewalls IP firewalls are used to restrict access into a network
to certain services and certain IP addresses. IP
access/restrictions can be set in configuration files.

Table 1

send a message to another process which is
already waiting, the first process simply
constructs the message and gives it to the
connectionless protocol layer (e.g., UDP) to
deliver.  Because no state information is
kept, the underlying protocol being used
does not guarantee that messages will arrive
at their destination or even if the messages
will arrive in the order that they were sent.
However, this lack of state also makes
connectionsless protocols such as UDP very
efficient and therefore desirable for many
network services.

The connection set-up is a three way
handshake during which each host tells the
other its beginning sequence number and
acknowledges the beginning sequence
number of the other host (see Fig. 1).  The
connection is NOT considered cstablished
until both hosts have acknowledged the
other host's sequence number. Once the
connection is established, the sequence
numbers wiil be used to guarantee in-order
delivery of data. In the first packet
exchange in figure 1, Host A (Alice) notifies
Host B (Bob) that she wants to establish a

Processes requiring more robust connection and provides her starting
communication, at the cost of some sequence number X. In the second packet
efficiency, use connection-oriented exchange, Bob sends his starting sequence
communication; the TCP layer provides such number, Y, and acknowledges that he has
services, Connection-oriented received Alice's starting number (it is
communication "guarantees” that incremented by one). In the final exchange,
information will both arrive and arrive in Alice acknowledges that she has received
order at the destination process, or if Bob's starting sequence number (once again,
delivery could not be made, at least the incrementing Y by one). At this point, the
sending  process  will be  notified. connection is established and data can be
Connection-oriented communication goes exchanged.

through three phases: connection set-up,
data exchange, and connection tear-down.
Under TCP, the set-up and tear-down
process are performed by three way
handshakes: the set-up handshake is
described below.

An important feature to note is that
Bob's sequence number, Y, must be used in
the third part of the handshake - Alice's
second packet. If Alice is not able to
demonstrate to Bob that she knows his
sequence number, Bob will terminate the
connection before it is fully established.

372



Connection Set-up

2.2 Routing @
Routing, A

Host 3 The Attack

B We are now
prepared to present the

Ack #: 0 address spoofing attack

Ack #: X+1

-

class. In this section we
will explain exactly what
we consider i1s an attack,

Time

Seq#: X+1 Ack# Y+l

explain the restriction in
the attack, and provide the

under the internet SYN
protocol suite, is Seq #: X
almost magical. A _

host wanting to send a Time SYN, ACK
packet to a remote P LR
host somewhere else ACK

on the internetwork

need only place the

packet on the network,
and the packet will be
automatically routed
through the network
until it reaches its destination. Neither the
sending nor receiving host need to know the
underlying architecture of the internetwork
(hence, we often refer to an internetwork as a
cloud). What is even more interesting for
our needs is that, for the most part, during a
packet's travels across the internetwork, only
the destination address of the packet is
examined. Therefore, the source address
can be anything, including a non-existent
host, and the internetwork will still deliver
the message.

In Figure 2, our adversary E (Eve)
wants to send a message to B (Bob)
pretending to be A (Alice). Fortunately for
Eve, she only needs to construct the packet
and place it on the internet. The cloud will
properly route the packet to Bob, and he will
be unable to tell that it was not Alice who
sent it. Once again, this feature will be
important as we describe the potential
attacks.

v Connection Established v

Figure 1

strategy for an adversary.

3.1 Definition

Our model
includes three players,
Host A (Alice), Host B (Bob), and the
adversary, Host E (Eve). Bob explicitly
grants Alice special privileges. This granting
of privileges is performed by listing Alice's
name (or address) in special configuration
files (e.g., .rhosts). Thus, Alice is able to get
Bob to perform certain actions, actions he
will not perform for just anybody, simply
because she is who she says she is. Eve's
goal is the following: To get Bob to perform
a specific action that he would perform for
Alice but not Eve,.

3.2 Restrictions

We must concern ourselves with two
major issues: (1) the placements of Alice,
Bob, and Eve and (2) the nature of the
communication used to get Bob to perform
the desired actions.

Figure 2

373



3.2.1
Architecture

The
placement of the
three players can
be described as

the model's
architecture. The
most basic

architecture  has
Alice and Bob on
the same network
as in figure 2. In
this scenario, either Eve is also on the same
network or she is outside the network.
However, for the purpose of this presentation
we  will examine the more general
architecture where Alice and Bob are on
separate networks. In this scenario, Eve's
location relative to Alice and Bob can be
described by one of the following four
categories: (1) on the same network as Bob,
(2) somewhere on the path between Alice
and Bob, (3) on the same network as Alice,
or (4) not on cither of Alice or Bob's
network and not in the path of the data (see
tigure 3). Each of Eve's four positions will
dictate different strategies used by Eve and
different defensive/detection strategies used
by Alice or Bob.

Please note that the simpler
architecture, where Alice and Bob are on the
same network, 1s really a special case of our
more general architecture depicted in figure
3. Namely, E| and E3 collapse into one
cuase, B4 remains as is, and Ej 1s eliminated.

3.2.2 Communication Nature

Here we uare concerned with how
Alice and Bob normally communicate. For
if Eve is to get Bob to perform some action
by making him believe Alice 1s requesting it
Eve's communication with Bob must be
indistinguishable from Alice's
communication with Bob (at least from
Bob's perspective). We divide
communication into two broad categories we
call orders and dialogues. In order
communication, Alice sends a single
message to Bob. Bob may reply, but we
assume he has already carried out the order

374

Figure 3

before replying.
A popular form
of order
communication

is the remote
procedure call
(RPC) over UDP.

In
dialogue
communication,
Alice and Bob
exchange several
messages prior 1o
Bob carrying out
any request. If the dialogue does not make
sense from Bob's perspective, Bob will not
carry out the requested action (indeed, Bob
may stop the dialogue before he even
receives the request). Any communication
over TCP must be considered a dialogue
because as we showed earlier, several
messages (packets) must be exchanged to set
up a TCP/IP connection. Furthermore, Bob
will be replying to Alice (not to Eve, who 1
pretending to be Alice). If Alice receives
Bob's replies, she may tell Bob that she isn't
talking to him, at which point Bob will
terminate the dialogue. Eve may need to
keep the dialogue going for some tiume, so
she will need to prevent Alice trom alerting
Bob.

The naturc of the communication.
order or dialogue, used to get Bob to
perform the desired action will dictate Eve's
strategy.

3.3 Strategy

For Eve to complete her goal, she
must achieve two main subgoals: establish a
torged communication with Bob and prevent
Alice from alerting Bob until it i1s too late.
we examine each of these goals and therr
challenges in the following section.

For Eve to transmit a forged puacket
to Bob, she must simply construct the packet
and place it on the network. The routing
software In the network will deliver the
packet for Eve. If the communication is
order-based in which only a single packet 1s
needed (e.g., a remote procedure call over
UDP), then FEve has completed her
communication  subgoal. However. if



communication is dialogue-based, Eve will
need to send multiple packets to Bob, the
contents of which will depend on replies that
Bob makes (e.g., Bob's sequence number
under TCP). If Eve is in positions Ej, Ep, or
E3, she 1s able to observe Bob's responses
thereby allowing her to send meaningful
subscquent packets to Bob.  If Eve is in
position Fgq, she can still observe Bob's
responses if she is able to modify the reply
path from Bob to Alice. This can easily be
done through source routing in JP networks.
Modifying router settings are also an option
to Eve. Finally, even if Eve 1s in position Eg
and is unable to direct Bob's traffic to Alice
through Eve's own network, if Eve can
predict Bob's responses (e.g., what Bob's
sequence number will be), she can still carry
on the communication with Bob. Predicting
sequence numbers 1s discussed in [Morris
85] and [Bellovin 89] and was used in the
recently IP spoofing attack.

Eve's second major goal 1s to prevent
Alice from interfering with the attack. Eve
can achicve this goal in many ways; we will
discuss three: (1) prevent the packets from
rcaching Alice (or Alice’s packets from
reaching Bob), (2) take away Alice's ability
to respond, and (3) complete the
communication before Alice's alerts can
reach Bob. The first approach requires Eve
to modify the routing behavior of the
network. If Eve is a node in the routing path
(¢.g., she 1s a router or has used source
routing to make the route flow through her),
she simply doesn't forward the packets to
Alice.  Even if Eve is not on the path
between Alice and Bob., she could modify
the routing information in one of the routers
in the path to misroute Alice's packets. Eve
could also wait for the iternetwork between
Alice and Bob to fail and launch her attack
then.

The second approach, taking away
Alice's ability to respond, can be much
simpler for Eve to implement. Eve can (1)
causce Alice to crash (not terribly difficult),
(2) wait for Alice to go down for other
reasons (e.g., maintenance), or (3) block the
TCP/IP portion of Alice's operating system
so that it cannot process Bob's packets. This
latter approach, perhaps the most graceful,
was used in the recently publicized IP

375

spoofing attack and originally detailed in
[Morris 85].

The third approach, completing the
communication (at which time Bob has
completed the action) before Alice can alert
Bob., is trnivial in  the order-based
communication (e.g., RPC). Bob will have
completed any operation prior to sending
any messages to Alice; therefore, by the time
Alice is aware that something is wrong, she is
too late. For dialogue-based
communication, the solution is more
difficult, because Bob will be sending data to
Alice before Bob completes the requested
operation. -However, if the communication
between Eve and Bob is much faster than
between Alice and Bob, Eve could complete
the attack in time.

3.4 Attack Summary

For Eve to achieve her goal of
getting Bob to perform an action for Eve
when he thinks he is doing it for Alice, Eve
must (1) get the forged message to Bob, (2)
if necessary carry on a dialogue with Bob,
and (3) prevent Alice from interfering with
the communication. Internetwork routing
will usually take care of the first subgoal for
Eve. The last two goals may be achieved in
a number of ways; our suggested approaches
were by no mcans complete.

4 An Example Attack

Having mapped out a general plan
for Eve to exploit acccss control which 1s
based on I[P addresses or names, we now
examine a particular instance of such an
attack. The attack, launched at the end of
1994 against  Tsutomu  Shimamura's
machine, has gained the attention of the
popular press, the usenet, and CERT. The
attack can be mapped directly onto the our
general model. Furthermore, the attack was
explicitly described in [Morns 85].

This particular attack involved a
server (Alice) and an X-client (Bob) (see
figure 4). Eve was in position E4. That is,
she was unable to observe the messages
passing between Alice and Bob.

Step 1: "Wedge" a portion of Alice's
OS such that it cannot process Bob's replies.



Players E  adversary

A server
B  X-client
Steps 1  Prevent Alice From

Responding

2 Probe for sequence
number prediction

3 Forge communication

non-existent
address

D

4

Figure 4

This is performed by sending multiple
connection requests to the rlogin port (port
S13) from a non-existent host. Alice
responds to each request (the second part of
the TCP handshake), but since the
originating host does not exist, the third part
of the handshake never comes. Alice is left
with several partially opened connections,
each filling up space in her internal data
structures.  Alice 15 only able to support up
to cight of these partial connections before
internal  tables fill up and she stops
responding to new packets to port 513.

Please note that had Eve listed her
own [P address in the forged, artificial
requests, her own TCP/IP software would
have sent a reset command, RST, following
Alice's reply. The RST would have freed
Alice's data structures. Therefore, Eve had
to use an artifictal address as the sender of
the requests—one that would never reply to
Alice's responsces.

Step 2: Predict what Bob's sequence
number will be. Eve sent 20 connection
requests to Bob's remote shell server; the
starting  sequence  number  for  each
connection  request  incremented by a
predictable value of 128,000. Eve most
likely used an address of a legitimate host
for the connection requests.  Thus, when
Bob replics with the second part of the
handshake, the OS, which did not actually
make the inttial request, generates a reset
message  (RST). This prevents Bob's
operating system from wedging in the same
way Alice's did in Step 1. The address of the
forged requests may either be Eve's own or
the address of another host. If the address is
that of another host, Eve must be able to
observe the path between Bob and the other

376

host (in order to observe the sequence
numbers).

Step 3: Have a dialogue with Bob
pretending to be Alice (which is still in a
confused state). In this particular case, the
dialogue was a TCP/IP connection to the
remote shell server. Although Eve could not
see Bob's replies, she accurately predicted
that Bob's starting sequence number would
be 2,024,384,000—exactly 128,000 more
than the last requested shell connection in
step 2. Eve's requested action: place a "+ +"
in the /.rhosts file (a shell command such as
"echo '+ +' »>> /.rhosts" was
sent). Bob, believing the connection was
from Alice, carried out the request.

At this stage, the goal we set forth for
Eve has been completed. She was able to get
Bob (the X-client) to perform an action
(place a "+ +" in /.rhosts) for her; something
only Alice could legitimately do. Following
this attack, the adversary easily logged into
Bob via rlogin. In fact, at this point anyonc
from anywhere could rlogin to Bob.

5 Popular gquestions

Couldn't this attack be simply
stopped by configuring routers (or
firewalls) to not forward an obviously
forged packets? This is true in limited
circumstances. For example, if the gateway
G in figure 2 did not forward the packet
which already states that it is from A onto
A's network, then the forgery in figure 2
could not take place. However, this is only a
partial solution. If hosts A and B (Alice and
Bob) are not on the same network already,
this approach cannot work. Furthermore,
even if Alice and Bob are on the same



network, this cannot prevent attacks coming
from Eve if she 15 on the same network
alrcady. In short, this solution is limited in
scope. A solution should not be dependent
on the network architecture,

In general, we define the Point of
Convergence as the point where the path
from Alice to Bob and Eve to Bob become
the same path (see Figure 5). A monitor or
gatceway placed between the Point of
Convergence and Bob would not be able to
detect or stop masquerading traffic from
Eve.

Point of
Convergence

Figure 5

Couldn't we require all "trusted"
hosts to belong to the same physical
network (that is, no traffic passes through a
gateway) and usc lower level addresses
such as the ethernet address? No. While it
is widely believed that the ethernet address is
a property of a host's ethernet hardware and
is  thercfore  unchangeable, we have
demonstrated the creation of packets which
include a forged ethernet source address.
These packets are indistinguishable from
legitimate packets.  We have reason to
believe that this is true with other network
media as well.

Couldn't we simply write a more
secure algorithm for choosing initial
sequence numbers? If by “secure” you
mean a less predictable starting sequence
number, the answer 15 again true, but only in
limited circumstances. This would work 1if,
as in the case in figure 3. the adversary Eve
is in position E4 and unable to alter routing
information to get the traffic to flow through
her. However, if Eve is in positions Eq, Eo,
or Ex or if Eve is in position E4 and can use
source routing or other means to alter

377

routing, a more random initial sequence
number would still not work. Eve is still able
to observe Bob's sequence number.

What other extensions to this attack
might exist? While numerous possibilities
exist, perhaps the one which concerns us the
most is the placing of a forged request into
an already existing TCP/IP connection. This
approach is generally referred to as session
hijacking, and existing programs, including
commercial ones, already have this
capability. In such an attack, even password
protected services are vulnerable since every
packet following a corrcct sign-on 1s trusted.
Indeed, we have even demonstrated this
attack against systems with  one-time
passwords.

6 _Summary

We have described a class of attacks
we call address spoofing. The reason this
class exists rests squarely on the fact that
systems and application developers have
chosen to use a property which was not
designed to provide security, namely the
sender's network address, as a means of
authentication. We have outlined where and
how this vulnerability can be exploited, and
we described a real instance of such an
attack. Finally, we hope to have convinced
you that the solution is not with "fixing"
parts of the protocols (addresses and
sequence numbcrs) which are not broken,
but with getting systems and application
developers to build their sccurity on
properties developed with the purpose of
providing security in the first place.

References

[Bellovin 89] Bellovin, S., "Security
Problems in the TCP/IP Protocol
Suite," Computer Communication
Review, Vol. 19, No. 2, pp. 32-48,
April 1989,

[Morris 85] Morris, R.T., "A Weakness 1n
the 4.2BSD Unix TCP/IP Software,"
Computing Science Technical
Report No. 117, AT&T Bell
Laboratories, Murray Hill, New
Jersey.



NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

National Information
Systems Security
Conference

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

43ILN3D ALIHN33S HILNdWOD TYNCILYN

NATIONAL COMPUTER SECURITY CENTER

October 22-25, 1996
Baltimore Convention Center
Baltimore, MD

Volume |




