Towards Detecting Intrusions

in a Networked Environment

L. Todd Heberlein

Division of Computer Science
Report No: CSE-91-23
June 1991

Abstract

To date, current authentication and access control mechanisms have been shown to
be insufficient for preventing intrusive activity in computer systems. Frequent media
reports, and now our own research, have shown the widespread proliferation of intrusive
behavior on the world's computer systems. With the recognition of the failure of current
mechanisms to prevent intrusive activity, a number of institutions have begun to research
methods to detect the intrusive activity. The majority of research elsewhere has focused on
analyzing audit trails generated by operating systems. The University of California, Davis,
on the other hand, has chosen to analyze the traffic on computer networks. In this thesis, 1
present both a method to model the traffic on the network and a method to analyze the
model in order to detect intrusive activity. A prototype software package has been

developed to test the model, and I discuss some of the surprising results from this study.

T

Chapter 1

Introduction

Computers are the targets of attacks {5]. Reports appear in the media almost
weekly about outsiders breaking into computers, employees misusing computers, and
rogue viruses and worms penetrating computers. Incidences such as the internet worm of
1988 [5], the Wank worm [5], and the Netherland hackers have gained international
recognition, and they serve to emphasize the vulnerability of computer systems around the
world.

These reported incidents are cases of intrusive behavior in our computer systems.
Intrusive behavior can be delined as any attempt, successful or not, to compromise the
integrity of data on a computer system, to disclose any data on the computer against the
wishes of the owner of that data, or to deny use of the computer system or data by

legitimate users [6]. General examples of intrusive behavior include [3]:

« Antempied break-in: This is an atlempt 10 enter a computer system without
authorization.

» Masquerading (or successfied break-in): This occurs when someone uses an account
on a computer system which belongs to someene else. This can occur if the
account’s password is compromised or a user leaves a terminal without logging
out.

» Penetration by legitimate user: This occurs when a legitimate user on the system
attempts to gain access to data to which he does not have expressed consent by the
owner of that data.

» Leakage by legitimate user: This occurs when a legitimate user discloses data to a
another individual without authorization to access that data.

» Malicious code: This includes both Trojan horses and viruses. Malicious code is
code which, when executed, does more than it 1s advertised to do. Although the
code may not have been written with malicious intent, the results of the actions

taken by the code may damage the computer systen.

Authentication and access control mechanisms are designed to guard against
mntrusive activity; however, these mechanisms have not been wholly successful. Failure of
these mechanisms are due in part to the ease by which passwords can be compromised,
failure by system administrators and users to properly use access control mechanisms,
poorly designed operating systems, and bugs in the operating systern.

The failures of authentication and access control mechanisms are compounded by
the decentralization of computer systems and the increased access to a computer system by
computer networks. The decentralization of computer systems 1s the movement away from
a single mainframe computer to multiple workstations and personal computers. The
movement is fueled by the increasing power and decreasing costs of workstations and
personal computers. The result of decentralization is a type of computer system which is
administered by people, usually the user community, with little or no formal training in
system administration or computer security. This in tumn results in a greater chance for
poorly configured authentication and access control mechanisms.

Connecting a computer to a network also increases the chances of intrusive
behavior occurring on that computer since this process increases the number of people who
can potentially access it. Connecting a computer to a network provides a path to that
computer for every user with access to the network, If the network is part of the internet,
essentially everyone with access to a telephone has a path to that computer.

With the realization that current authentication and access control mechanisms have
not provided adequate security against intrusive behavior, institutions which use
computers and computer networks have become interested in detecting the intrusive activity
which is occurring. If an intrusion can be detected, an institution can at least know from
where intrusive activity is coming, how the activity is being perpetrated (and therefore,
hopefully how to stop it), and what data have been compromised. The need to detect
intrusive behavior has created a new field under the area of computer security called

"intrusion detection.”

wd

L1 Intrusion Detection

“Intrusion detection” means an attempt to detect any intrusive behavior occurring on
computer systems. The first published paper in the field of intrusion detection, "An
Intrusion-Detection Model," laid the groundwork for much of the future effort in the ficld
[3]. The paper's model is based on the hypothesis that intrusive behavior would appear
abnormal compared to typical behavior. The behavior of an object (e.g. users, programs,
and terminals) 1s determined by the examination of system resources used by that object.
Examples of resource usage include the number of processes started, the number of CPU
cycles used, and the number of files opened. A statistical profile is created for "typical”
behavior, and when a new behavior is observed which does not match the profile, it is
reported as possibly intrusive. Much of the research in the field has focused on the
representation of profiles and the comparison of behaviors based on those profiles
13,10,15,18,19,20,21,22,23].

Another approach used by intrusion detection systems is to use an expert system 1o
determine if computing policy has been violated or to look for tell tale signs left by intrusive

activity [18,20,21].

1.1.1 Audit Trail Analysis

The majority of intrusion detection systems use the operating system's auadit trails
as their source of information about system resource utilization. A typical audit record
includes information such as which subject attempted to do what action to which object.
Information is extracted from the audit records to record the system resource utilization for
different objects such as users, terminals, and the system as a whole.

Although the audit-trail-based analysis has provided a measure of success, a
number of limitations exist with this method. First, audit trails traditionally do not provide

much of the information necessary to perform security analysis. This 1s due in part to the

historical purpose of audit trail collection - the billing of customers. Second, audit trails
tend (o be system specific. Each operating system provides a different set of information in
a different format. An intrusion detection system designed to work on a Multics operating
system's audit trails would need a great deal of restructuring to operale on another
operating system. Third, the collection of audit trails is expensive in terms of CPU usage
and storage utilization. Many organizations, even those working in the field of computer
security, turn off auditing on their machines to avoid the resource penalty. Fourth, the
audit trails themselves can be the target of an intruder. Intruders have been observed
turning off auditing on machines in order to hide their tracks. Fifth, and last, the delay in
the actual recording and analysis of the audit information can allow an intruder to do
damage and exit the machine long before the intrusion is noticed {22]. So, although there
exists a strong desire for immediate notification of intrusive activity, audit mechanisms can
introduce a delay factor.

Due to these drawbacks, as well as the desire to explore other possible sources of
information, the University of California, Davis embarked on an effort to build an intrusion
detection system which uses network traffic as its source of information on resource

utilization [10,11,12].

1.1.2 Network Traffic Analysis

By taking advantage of the broadcast property of a local area network (LAN), the
analysis of network traffic can solve a number of the drawbacks associated with audit trail
based analysis. First, network standards exist by which a variety of hosts can
communicate. An intrusion detection system based on network traffic can therefore
simultancously monitor a number of hosts consisting of different hardware and operating
system platforms. A network consisting of a number of possibly different computer
systems is referred to throughout this thesis as a heterogeneous network. Second, the

collection of network traffic does not create any performance degradation on the machines

being monitored, so network monitoring 1s more attractive to a user community which
places importance in the performance and responsiveness of their machines. Third, since a
network monitor can be logically 1solated from the computer environment, its analysis
cannot be compromised by an intruder. Typically, the intruder has absolutely no way of
knowing that the network is being monitored. And fourth, since a network monitor draws
1ts information directly from the network, no delay occurs from the time an intrusion occurs
and the tiine the evidence is available. Instead, intrusive activity 1s observed as it occurs.

The original work in this type of network monitoring was based on simple traffic
analysis: modelling the flow of data among the different machines [11,12]. In this work,
network traffic is modelled with a concept called a data path. A data path 1s a method by
which one machine can communicate with a second machine. A data path is defined by the
three-tuple <src_host, dst_host, network_service>. If the traffic flow shifted (e.g. a new
data path is obscrved) at any point, this information would be reported as a possible
intrusion. For example, a particular host initiating a login to a host to which it has never
logged into before would be considered suspicious. This work was based on Denning's
hypothesis that intrusive activity would manifest itself as anomalous behavior.

Although this method showed early promise, a major drawback quickly became
apparent: the information available from simple network packet analysis was at a level
much too low to detect subtle intrusive activity. Ior example, an intrusion over a
commonly used data path would not be detected. Unfortunately, this is often the case
when the intrusion is being perpetrated by an insider. Furthermore, services which
typically produced unpredictable activity, such as remote fingers, are not helpful in the
detection of intrusive activity. Because such a high percentage of network activity by these
serves are anomalous, they simply produce too many incorrect reports of intrusive activity,
or false positives (see section 5.2).

e

The problem is not unlike the problem facing the prisoners in Plato's "The Allegory

of the Cave" [17]. The prisoners are provided with very low level information about the

6

real world - simply the shadows of the actual activity. Although the information is at a
fairly low level, patterns of light and dark on the wall, the information represents a very
complex and dynamic world. The prisoners can detect major changes in the light and dark
patterns on the wall (e.g. a shadow where there is almost always Iight) without too much
difficulty; however, to have a better understanding of what is truly going on in the world,
the prisoners must infer complex concepts from the shadow patterns. Plato's prisoners do
not perform this abstraction, so when one of them is finally shown the actual world, he 18
blinded and then dumbfounded by what he sces. Only then does he realize how little he
understood by simply observing the shadows.

Our monitor, like the prisoners, can only sce the shadows of the real world activity.
The shadows, network packets, provide some capability of determining when something
is wrong (e.g. packets being exchanged between hosts which have never communicated
before); however, to provide a better understanding of the networked environment being
monitored, and therefore to be able to detect the more subtle intrusive behavior, the monitor
must be able to abstract out the complex behavior of the networked environment from the
packets. Unfortunately, unlike Plato's prisoner, our monitor cannot be unshackled to
directly observe the objects creating the shadows. Instead, the objects must be inferred and

understood by only observing the low level network packets.

1.2 Goal

The motivating goal behind the work presented in this thesis is to design a system
capable of detecting intrusive activity in a heterogeneous network. The design 1s
constrained by the fact that only the low-level information of packets arc directly observed
by the system; however, to detect subtle intrusive behavior, more complex phenomena
must be inferred and analyzed. The behavior of individual network connections, individual

hosts, network services, and other high-level objects must be scrutinized in order to detect

intrusiveness, Thus the design must be capable of inferring complex objects and then
detecting intrusiveness in these complex objects.

The problem of detecting intrusive behavior in a heterogeneous network through the
observation of packets can be abstracted 1o one of detecting behaviors in complex systems
from the analysis of low level information. If this generalized problem can be solved, then
the specific problem of detecting intrusiveness in computer networks can be reduced to the
application of the generalized solution to this specific problem. Furthermore, the
generalized solution can be applied to other specific problems such as detection of
intrusiveness in a single computer system, detection of component failure in computer
networks, and detection of component malfunction in complex subsystems {(e.g.
spacceraft).

Chapter two of this thesis presents a meta-language to model complex systems from
the observation of low level information. Chapter three presents a generalized solution for
detecting a particular behavior in a system represented by the meta-language presented in
chapter two. These two chapters offer a solution to the gencralized problem of detecting a
behavior in a complex system. Chapter four applies this generalized solution to the original
problem of detecting intrusive behavior in a heterogeneous computer network. This
application fulfills the original goal of this thesis: the design of a system to detect intrusive
activity. As proof of the functionality of the design, chapter five presents the results of a
prototype network based intrusion detection system. Conclusions and future research are
presented in chapter six. And finally, Appendix A provides a brief description of the

installation and operation of the working prototype.

Chapter 2

System Description Language

As mentioned previously, the problem of detecting intrusive activity in a
heterogeneous network of computers through the observation of network packets can be
generalized to the detection of a behavior in a complex system from the analysis of low
level information. The complex system is composed of a variety of components each of
which in turn may be composed of other components, but only the simplest of
components, the lowest levels of information, are directly visible to a montitor.
Unfortunately, to detect the behavior of interest, the complex components which are not
directly observed, as well as the low level components, must be examined for the
manifestation of the behavior.

To provide for a mechanism to infer the complex components of a system, [have
defined a meta-language, called the system description language (SDL), to describe the
relationship among components of a system. The description of a system with this
language is called its system language definition. As the Jow level information is observed,
the system language definition is used to infer the existence of the complex objects and the
relationships betwcen them. A snapshot of all the low level objects and the inferred
complex objects and their relationships to each other represent a mode! of the actual system
at a particular moment in time. It is this model which will be examined for the
manifestation of the behavior of interest.

The SDL, systcm language definition, and the snapshot of an actual system have a
direct resemblance to the definition of a traditional programming language. The SDL
provides a functionality similar to that of the BNF meta-language. The system language

definition is similar to a traditional program language definition (e.g. Pascal). And the

program written in
snapshot of sysiem — - language definition
{cg. Pascal program)

| 1

syélcm language programming language
definiuon {eg. ICEL) definition (cg. Pascal)

¢ 1

System Description
Language (SDL)

- BNF meta-language

Figure 1

snapshot of a system is similar to a program defined by a traditional programing language.
This relationship 1s shown in figure 1.

The system description language is the focus of this chapter. Scction 2.1
introduces the issues which must be addressed by the system description language.
Section 2.2 presents a review of attribute gramumars, the ancestor of the system description

language. And section 2.3 discusscs the actual system description language.

2.1 Issues to be Addresses by the SDL

To design a language which can be used 1o describe and model complex systems
from the observation of low level information, a number of issues must be addressed.
First, how are the low level, simple components of the system detected, and how are the
attributes of cach low level object determined? | have chosen to not address this issue in
this thesis, and it is not part of the language definition. The low level components are
detected, and their associated attributes are determined by a preprocessor. This is not
unlike the design of conventional programming languages which assume the presenee of a

jexical analyzer to detect tokens, and, if necessary, determine their attributes.

10

The second issue is identification and representation of components of the system
which are not observed directly. In fact, a complex object which does not have a real
world counterpart may be desired. For example, my model for the computer network
environment includes an object called a "service-set." The service-set object does not cxist
in the actual system, but its presence is helpful in analyzing other components such as
network connections. The system description language must provide a mechanism for
inferring the existence of these unobserved, perhaps nonexistent, objects. Furthermore,
the language must provide mechanisms to determine enough information about these
abstract objects so they can be analyzed for the behavior of interest.

The third issue concerns the transitory nature of many of the objects in a system.
Systems such as a heterogeneous network have a number of components which exist for a
time, and then disappear. For example, network connections are created and destroyed
comtinuously. The system description language must be able to handle the creation and
destruction of components, and the systemn description language must provide information
to determine when a component should be created or destroyed. Thus the model of an
actual system, as determined by the system language definition, can change over time.

In summary, the system description language assumes the low level, simple
components and their attributes are provided to it. From these simple components, the
systems description language must provide a mechanism to infer the existence of, and the
relationships between, complex objects. The system description language must provide
mechanisms to determine enough information about the complex objects to analyze the
objects for the presence of the behavior of interest. Finally, the system description
language must provide a means both to determine when a component to the system is
created or destroyed and to modify the model of the system due to the creation or

destruction of a component.

11

2.2 Attribute Grammars

The system description language which satisfies the above requirements is built
upoen the concept of attribute grammars. A quick introduction to attribute grammars is
provided below. Readers already familiar with this subject may want to skip 1o section
2.3.

An attribute grammar describes both the strings accepted by a language {(c.g. the
syntax of the language) and a method to determine the "meaning” of those strings (e.g. the
semantics of the language). An attribute grammar consists of a context-frece grammar, a set
of attributes for each symbol in the grammar, and a set of functions defined within the
scope of a production rule in the grammar to determine the values for the attributes of each
symbol in that production [1]. The following example of an attribute grammar for the
definition and interpretation of binary numbers” will be used to clarify the relationships
between these three components of an attribute grammar.

The context-free grammar for our language of binary numerals is defined by G =
(V,N,P.S) where V is the set of symbols, N is the sct of nonterminal symbols, P is the
set of production rules, and S, an element of N, is the start symbol. The set of terminal
symbols, a subsect of V, is {1,0,.}. These are the ASCII characters one, zero, and period.
The set of nonterminal symbols, N, is {B,L.,N}. They represent the abstract objects bit,
list of bits, and number. The start symbol for our attribute grammar for binary numbers is
N, the abstract number. The set of production rules relating these symbols and providing

the definition of acceptable strings is given in figure 2A.

* This example is taken from |14].

12

N-LL NoSLILy w(N)=wL) + w(Lo)2/L2)
N->L N-—-L v(N) = v(L)
L. LB L1 —1B v(L1) = 2v(L2) + ¥(B), I(L.) = I1.7)+1
L—-B L—-B vy =v(B), L) =1
B—1 B-oi v(B)=1
B0 B0 v(B) =0

A B

Figure 2

By this context free grammar, we can see that the string 11.01 is an acceptable

binary number. The parse tree for this string is given in figure 3A.

N N (=3.25)
/ e
1L .f \L e

AN N /L‘Q =2) . L@’:m
vor o7 LGm1A1) B 1) LE0, B TR el
B 1 1 I I || '
| | B e-1) I B 60 I
1 0 i 0

A B

Figure 3

The context free grammar can be used to build a parse tree of a string and determine
whether the string 1s valid in the language; however, the context free grammar cannot be
used to determine the meaning of the string. The addition of attributes and attribute
functions are necessary to determine the meaning of the string.

The set of attributes, A, for each nonterminal are given as follows: A(B) = {v],
A(L) = {v,l}, and A(N) = {v}. The attribute v is the value of a symbol, and the attribute /
15 the length of a symbol.

The set of functions defined within the scope of each production rule is given in
figure 2B,

By using the attributes for each symbol and the attribute functions, we can now

assign meaning to each symbol in the parse tree (see figure 3B). For our language of

binary numbers, the most important meaning is that of the start symbol N. Qur string

11.01 now has the meaning of 3.25.

2.3 System Description Language

This section introduces the system description language, an extension of attribute
grammars. This system description language provides a structure by which a system's
components and relationships between components can be described. The description, or
system language definition, of a4 system can be used to both infer the existence of complex
objccts (e.g. determine the syntactic structure of the system) and assign "meaning” to these
objects (e.g. the semantic information about the system). The meaning of an object, the
values of its attributes, will be used to determine if the behavior of interest is present in any
of the components of the system.

Similar to an attribute grammar, a system language definition written in the SDL
consists of a structural grammar, a set of attributes for each object, or symbol, in the
structural grammar, and a set of functions defined within the scope of a production rule of
the structural grammar which determine the attribute values for each object in that

production.

2.3.1 Objects

Objects are the components of the system which will be modelled. These objects
may or may not have real world counterparts. Two variety of objects exist: basic objects
and complex objects. Basic objects are the low-level components which are directly
observed. These are similar to terminal symbols in traditional programming languages.
Complex objects, on the other hand, are not observed and must be inferred from the
observation of basic objects. Complex objects are similar to non-terminal symbols in

traditional programming languages. These two objects are discussed further below.

14

2.3.1.1 Basic Objects

Basic objects are the only observed components of a system. They are simple,
indivisible components of the complex system being modelled; they are detected and their
attributes determined by a preprocessor. This preprocessor performs the job of a lexical
analyzer in traditional programming languages. Basic objects are treated as events; they
only exist for the moment at which they are observed. For example, in the networked
system, packets arc basic objects. Basic objects for other systems may be an audit record
from an operating system, a message to a spacecraft component, or a sampled data point
from some measuring instrument.

A basic object type is defined by a name and a list of attributes. The name format
for my system is the same as the standard C identifier. Attributes will be discussed in

section 2.3.2. An example basic object representing a possible audit record is:

basic: audit_record {
attribute list
]

The keyword basic states that the following object type is a basic object, and the
object type's name is audit_record. Attributes for this object will be discussed later in

scetion 2.3.3.

2.3.1.2 Complex Objects

As mentioned previously, complex objects are components of a system which are
not directly observed by the monitor, so they must be inferred from the observation of the
basic objects. A complex object is composed of basic objects and/or other complex
objects. For example, a complex object type called process may be defined for an audit
trail based monitor. Although processes are not directly observed by the monitor,

information about them can be inferred from the audit records. Therefore, in our model,

processes are composed of audit records. Thi

section 2.3.3.

infer
existence

time has
elapsed

Type 1

basic object observed

-=> infer existence -
infer

exislence

new composition
object observed

compositicn
object dies

ncw composition

time has object observed

elapsed

Type 3
Figure 4

15

s composition will be discussed further in

mfer
exislence
last composition

new compasition
object observed

composition
object diecs

new composition
object observed

Type 2

Complex object type 1: composed of only
basic objects

Complex object type 2: composed of only
complex objects

Complex object type 3: composed of both
basic and complex objects

A major difference between complex objects and basic objects is that complex

objects have persistence. Whereas basic objects are treated as events, complex objects are

treated as persistent clements which are created and possibly destroyed. The creation of a

complex object occurs as soon as 1t can be inferred. The destruction of an object is

16

considerably more complex and depends on the both the definition of the complex object
and the existence of objects which compose the complex object.

First, if any object A exists and is part of an object B's composition, then object B
should continue to exist. Second, if the last object which is part of object B's composition
is destroyed, then object B will be destroyed after a specified time delay, At, unless another
object which is part of B's composition is created or observed. This specified At is the
value of a function associated with the object, and it may depend on the object’s attributes.
‘This function is discussed in section 2.3.4.

Complex objects can be composed of only basic objects, only complex objects, or a
combination of basic and complex objects. The three state machines describing the hife
cycle of a complex object are shown in figure 4.

Complex object types are defined in my system by one of the following forms

depending on their composition:

complex iype 1: name {
atiribicte list
)
complex type 2: name {
aftribute list
]
complex type 3: name |

attribute list

}

2.3.2 Afttributes

As mentioned previously, each object has a set of attributes associated with it.
These attributes provide a "meaning" to each object. Itis the attributes which will be used
to determine if the object is associated with a particular behavior. These atiributes are also
used, along with the production rules described in 2.3.3, to determined if an object A is

part of object B's composition.

17

Each atribute consists of a name and type. The name is used to reference the value,
and the type determines the variable type which can be assigned or retrieved from the
attribute. For example, "int value” would describe an attribute of type "int" which is
referenced by the name "value." Attribute types may be complex structures defined in the
same format as complex types are described in the C language {13]). The extent of the
complexity depends on the final implementation. For simplicity, 1 allow attributes types to
be as complex as any in the C language, and they are therefore defined in the C style,

Many of the attribute values of an object will be assigned by the monitor. For
example, when the existence of a new host is inferred, a host object is created and its
internet address is immediately assigned by the system. The values of other attributes,
however, are determined by attribute functions. Attribute functions, described in section
2.3.4, take as input attribute values associated with the object and possibly attributes of
other objects associated with it by the production rules (see section 2.3.3).

A complex object type to represent a process which 15 composed of audit records

can now be defined as follows:

complex type 1: process{
int process_id
int crecaton_fime
char* user_namc
int num_of files_opened
}

This simple definition of a process has a simple identificr, process id, a time at
which the process was created, creation_time, the user who owns the process, user_name,
and a record of the number of data files the process has opened, num_of files opened.
The set of attributes for an object O can be defined as A(O) = {ay,a2,...,ap}. For example,

A(process) = {process_id, creation_time, user_name, num_of_files_opened].

15

2.3.3 Productions

Productions define the relationship between the different object types of a system.
They define which types of objects compose a complex object, and they indicate how 1o
determine which set of objects from an object type compose that object. A production rule
has the form:

complex object type -> hist of object_composition

The complex_object_type is simply the name of a complex object type (e.g.
process). An object composition is a set defined by a tuple of the form <object_type
restrictions>. The object_type is simply the name of one of the defined object types (basic
or complex), and the restrictions determine which of all possible objects of type object_type
are actually used to compose the complex object.

For example, let the complex object type called process be definc as above, and let

the object type called audit_record be defined as follows:

basic: audit_record {
mnt audit_number
int process_id
it action
char* object_name
it error_code
}

A production rule for the process object can now be defined as follows:
process -> audit_record
where for all e ¢ audit_record
e.process_id = process.process_id
Finally, each element of audit_record which composes a particular process object is
called a sub-component of the process objects, and the process object is called a super-

component of the audit_record objects. The concepts of sub-components and super-

components will be used in section 3.2 to define integrated object analysis functions.

19

2.3.4 Attribute Functions

The attributes of a complex object which are not static (e.g. the internet address of a
host is determined at the moment it is inferred, and this value does not change) are defined
by attribute functions. The attribute functions for a structural language are defined as they
are for attribute grammars; however, special attention must be given to the format of the
production and the restriction for the production. For example, an attribute function to
determine the value for the aunbute "num_of files opened” of a process object could be as
follows:

process.num_of_{files_opened =| S |

where S = {¢ € audit_record |
(e.action = OPEN_FILE) & (e.error_code = NONE))

Each e € audit_record is assumed to be a sub-component of the process object as defined

by the restrictions in the production rule for process objects.

)
=

Chapter 3

Detecting Behaviors in Systems

Once the structural grammar, attributes, and attribute functions have been defined, a
second set of functions, called behavior-detection functions, must be defined for each
object in the structural grammar. Behavior-detection functions determine whether an object
is associated with the particular behavior of interest. Because a behavior may manifest
itself differently or morc clearly in different object types, each object in a system parse trec
(the snapshot of the system) must be examined for the behavior by particular behavior-
detection functions designed for that object type. For each type of object, therc will be two
behavior-detection functions: the isolated behavior-detection function, and the integrated

behavior-detection functions, These two function types are discussed below.

3.1 Isolated Object Analysis

An isolated behavior-detection function for an object uses the attributes of that
object to calculate the probability that the object is associated with the behavior of interest.
In short, an isolated behavior-detection function is a classifier. With some preprocessing to
transform the attribute types, a large number of classifiers can be used.

Unfortunately, classifiers generally have to be trained with sample data, and the
behavior of interest is often quite rare. There are at least two possible solutions to the
problem of lack of sample data: expert systems and single behavior classifiers. An expert
system, designed by people knowledgeable about the problem domain, can use heuristics
to determine how close an object's behavior is to the behavior of interest. A single
behavior classifier is built around the assumption that a rare behavior will be significantly
different than normal behavior. If this is true, a single classifier can profile normal
behavior, and then it could report any behavior which does not strongly resemble normal

behavior. Work on such single behavior classifiers have been done by SRI for IDES [15]

21

and Los Alamos National Laboratories for Wisdom and Sense [22]. Tor our particular
problem environment, we combined the efforts of both an expert systemn and a single

behavior classifier.

3.2 Integrated Objects Analysis

An integrated behavior-detection function for an object modifies the result of the
isolated behavior-detection function for the object by including the analysis of the isolated
behavior-detection functions for sub-components and super-components of that object. The
modification by an integrated behavior-detection function allows the inclusion of both the
results of aggregated analysis (those from super-components) and the results of more
detailed levels of analysis (those from sub-components). The integrated behavior-detection

function can he implemented by a weighted average function such as:

W1*Object 1f + Wo*Super_if + Wa*Sub_if
Wi+ W2+ Ws

Where Object_if 1s the value calculated by the objects isolated behavior-detection function,
Super 1f s the average isolated behavior-detection function value for all the super -
components, Sub_if is the average isolated behavior-detection function value for all the
sub-components, and W1, Wo, and W3 are the weights,

The relationship between an object’s attributes, the isolated behavior-detection
functions, and the integrated behavior-detection functions can be seen in figure 5. In this
example, we are interested in analyzing the object B for a particular behavior. The object
B1 is composed of objects €1 and Cp, and it 1s part of the object A1, Result By is the
analysis of object B1 in 1solation, and result By is the result after combining the result of

31y with the results from objects C1, C2, and A1,

object A}

1v

object B

isolated behavior detection
function for objects of type A

L
N\

m\T\

isolated behavior detection

abject Cy function for objects of type B

i
o

integrrated behavior detection
function for objects of type B

isolated behavior detection

object Cy function for objects of type C

ZRNNENNRIIHII]

L |
W

Tigure 5

3.3 Examples

This section provides some examples which take advantage of the of the integrated
behavior-detection functions. These examples, taken from actual events recorded by the
NSM implementation, show how the analysis of an object can be enhance by the including
the analysis of higher-level and lower-level objects. The objects in question are hosts and
connections, and their relationship is given by the production rule

HOST -> CONNECTION

The first example involved an intruder who exploited a poor design in an operating
system: the ability to use a file transfer service called tftp (trivial file transfer protocol) to
copy the password file from a host without having to login to that host. The intruder on
host A initiated a tftp connection to host B to acquire the password file. Several minutes
later the intruder initiated a successful login from A to B by using a cracked password.

The analysis of the second connection, the login connection, 1s very important.
Although the anomaly detection component of the isolated behavior-detection function (see

section 4.2 for more information on the isolated behavior-detection function) provided a

23

fairly high warning level for this connection, the isolated behavior-detection function
ranked this connection as suspicious as several other unusual login connections that day.
However, because host A was marked as suspicious due to the fact that a password file had
been shipped to it, the integrated behavior-detection function raised the suspicion level for
the connection above that of other login connections-a correct analysis. Therefore,
although the isolated behavior-detection function rated the connections the same, by using
the integrated behavior-detection analysis the NSM was able to successfully rate the
intrusive connection as more suspicious than other connections.

The second example involved an intruder trying to gain access to computers by
trying default passwords. The intruder would try the account "guest” with password
"guest,” the account "root" with password "root," and the account "field" with password
"service." Because this is similar to a thief going down a street and trying each door to see
if it is unlocked, computer security experts call this a "door knob attack.” This attack was
successful on two machines.

In this particular example, the intruder on host C attempted a number of login
connections to several machines. Because each connection was marked as suspicious, the
integrated behavior-detection function increased the suspicion level for host C. Thus, host
C was rated as being more likely to be involved with intrusive activity than any other host.

In both of these examples the analysis of the isolated behavior-detection functions
were enhanced by including other information. In the first example, the suspicion level of
a connection was increased by including the analysis of one of it's super-components, the
host A. Likewise, in the second example, the suspicion level of a host was increased by

including the analysis of the sub-components, the connections.

24

Chapter 4

Network Security Monitor

What has been presented so far are a method for modelling systems and a method
for analyzing them for particular behaviors. This chapter applies these methods to the LAN
environment to create a monitor capable of detecting intrusive behavior in that environment.
Scction 4.1 uses the system description language to model the network, and section 4.2
defines some simple, but effective, behavior-detection functions to look for intrusive
behavior.

As evidence to support the methodologies presented in this thesis, and to support
the network model in particular, a prototype monitor, called the Network Security Monitor
(NSM), has been implemented using the model described in this section. The results from

this implementation follow in chapter 5.

4.1 Interconnected Computing Environment Language

Using the system description language format, 1 definc a system language
definition, called the Interconnected Computing Environment Language (ICEL), to model
the heterogeneous network. The objects of the ICEL are described in section 4.1.2; their
attributes are presented in 4.1.3; productions for the complex objects are given in 4.1.4;

and the attribute functions for each complex object are presented in 4.1.5.

4.1.2 Objects

4.1.2.1 Basic Objects
The ICEL has only one basic object: the packet. The packet represents a standard

internet packet as defined in [2]. Packets, the only component of the 1CEL directly

25

obscrved, are given to the NSM as complete units with all their auributes precomputed.
‘These attributes are presented in detail in section 4.1.4.

Packets are the only means of communication on the network. When a process on
machine A wants to send some information to a process on machine B, it must do so by

encapsulating the information in an internct packet and placing that packet on the network.

4.1.2.2 Complex Objects

The ICEL has a number of complex objects. These complex objects include
streams, connections, hosts, service-sets, and the network-system. Streams, connections,
and hosts have direct analogies in the real system being monitored. Service-sets and the
network-systein do not have such equivalences; however, they are used to provide better
analysts of the network environment.

A stream 1s a unidirectional flow of data from a process on one machine to a
process on another. It is constructed by assembling together the packets the first process
places on the network for the second process. The data inside the packets can be strung
together, so patterns which may span several packets can be detected. Tor example, the
word "hello” may be distributed in five different packets, but a stream has the capability of
detecting the existence of that word,

A connection is a bidirectional flow of data between two process on two machines.
It consists of two streams - one representing an input stream and the other representing an
output stream. For example, for a login connection one stream may represent the
keystrokes a user sends to the remote process, and the other stream may represent the
information the user sees (c.g. results from doing an "Is").

A host represents a node on the network with an internet address such as a
computer or printer. A host is identified by the connection made from or to it. Thus a host

15 constructed by assembling all the connections associated with that host.

A service-set is a fictitious object representing the overall behavior of a particular
network service. It is constructed by assembling all of the connections of a particular
service type together. IFor example, a service-set exists representing all telnet connections.
A service-set essentially aggregates the wamning values for all connections of a particular
service. Thus the object is useful for determining whether or not a flaw in a particular
service is being mechanically exploited on a number of machines.

A network-system is a fictitious object representing the entire state of the networked
computing environment. Only a single instance of the network-system exists (e.g. it is the

start symbol for the system language).

4.1.3 Attribules

27

'The attributes for each of the objects are given in the following tables.

Attributes for a PACKET

Adttribuie

Description

sre_addr

dst _addr

protocal

STC_port

dst port

nun_of_bytes

list_of_bvtes

ume

the intermet address of the host which generated
the packet.

the internet address of the host to which the packet
is destined.

the protocol used (e.g. TCP/IP or UDP/IP).

the port number on the source host which
generated the packet. This 15 used to help identify
the processes which are exchanging the packet.
the port number on the host to which the packet is
destined. This is used to help identify the
processes which are exchanging the packet.

the number of bytes in the data portion of this
packet.

the actual bytes in the data portion of this packet.

the time at which the packet was observed.

Attributes for a STREAM

Attribute

Descniption

| src. addr
dst_addr
protocol
src. port

dst port

start time
last_update. time

total_packets
total_bytes

string_matcher 1iss

the internet address of the host from which the
packets in this streamn were gencrated.

the internet address of the host o which the
packets 1n this stream are destined.

the protocol used (e.g. TCP/IP or UDP/IP).

the port number on the source host for this stream,
This is used to belp identify the processes which
are exchanging the packet.

the port number on the destination host for this
stream. This 1s used to help identify the processes
which are exchanging the packet.

the time of the first packet observed for this
streamn.

the time of the most recent packet observed for the
strearn.

the number of packets transmitted on this stream.,
the number of bytes of data in the packets.

a list of string_matchers. A string_matcher is a
complex data structure used to look for a particular
string in the data portion of consecutive packets.

It is represented by the 3-tuple <count,state,dfa>.
The count 1s the number of times the string has
been matched. The state is the current state of the
dfa. And the dfa 1s an automaton designed to
match a string in a stream. The current
implementation 1s based on the Knuth-Morris-
Pratt algorithin | 16]

24

Attributes for a CONNLECTION

Attribute

Description

mtator addr

recelver addr

protocol

initiator, port

recelver port

service

slare oame

last_update_ tme

pkts_from_initiator

bytes, from initiator

strs matched from_ initiator

pkis from receiver

bytes from receiver

strs. matched {rom recelver

the internet address of the host which initated the
CONNection.

the internet address of the host to which the
connection is made.

the protocol used (e.g. TCP/IP or UDP/IP).

the port number on the host initiating the
connection.

the port number on the host receiving the
connection, This 1s used to determine the network
service type of the connection.

the network service (e.g. telnet) used for the
connection

the time the existence of the connection 1s {irst
inferred. This is the time of the first packet
observed for this connection.

the time of the most recent packet observed, from
either stream, for this connection,

the number of packets transmitted {rom the
inttiator host 1o the receiver host.

the number of bytes of data transmitted from the
initiator host 1o the Teceiver host.

a list of numbers indicating the number of times
cach string being scarched for has been matched in
the data from the initiator host.

the number of packets transmitted from the
receiver host to the initiator host.

the number of bytes of data transmitted from the
receiver host to the initiator host.

a list of numbers indicating the number of times
each string being searched for has been matched in
the data from the recelver host.

Attributes for a HOST

Attribute

Description

host_addr

pkits_from_host

bytes_from host

strs. matched from _host

pkts to host

bytes to host

strs_matched_to_host

n_ min_connection_num_{rom

current_connection_num_{rom

n_min_conneclion _num_to

current_connection_num_to

the internet address of the host.

the number of packets generated from the host
since its existence was {irst inferred.

the number of bytes in the packets from the host
since its existence was first inferred.

a list of numbers indicating the number of times
each string being searched for has been matched in
data from the host.

the number of packets sent to the host since its
existence was first inferred.

the number of bytes in the packets sent to the host
since its existence was first inferred.

a list of numbers indicating the number of times
cach string being searched for has been matched 1n
data to the host.

the number of connections initiated from the host
in the last n rminutes.

the number of connections from the host which
currently exist.

the number of connections made to the host in the
last n minutes.

the number of connections made to the host which
currently exist.

31

Attributes for a SERVICE-SET

Artribute

Description

protocol

service, id

total _pkts_from_initiator

total_bytes_from_initiator

strs_matched_from_initiator

total pkis_from_receiver

total bytes_from_rcceiver

strs_matched_from_receiver

Nn_min_conncction num

curent_connect] OI_THUIT

the protocol used {e.g. TCP/IP or UDI/IP).

the network service (e.g. telnet) represented by
this service-set.

the number of packets generated by the initiator
host for all connections of this service type.

the number of bytes generated by the initiator host
for all connections of this service type.

a list of numbers indicating the number of times
cach string being searched for has been matched in
the data from the initiator host for all connections
of this service type.

the number of packets generated by the receiver
host for all connections of this service type.,

the number of bytes generated by the receiver host
for all connections of this service type.

a list of numbers indicating the number of times
cach string being searched for has been matched in
the data from the receiver host for all connections
of this service type.

the number of connection of this service type
which have been generated in the last n minutes.

the number of connections of this service type
which currently exist.

32

Atrbutes for a NETWORK-SYSTEM

Attribute

Description

total pkts_from _initiator

total _bytes_from_initiator

strs_matched from_initiator

total_ pkts_{rom_rcceiver

total_bytes_{rom_recicver

strs matched. from_receiver

n_min_ connection_num

current_conneclion_num

current_host_pum

the sum of all packets from initiator streams since
the network-system’s existence was first inferred.

the sum of bytes in the data portion of the packets
from initiator streams since the network-system's
existence was first inferred.

a list of numbers indicating the number of times
each string being searched for has been matched in
streams {rom initiator hosts.

the sum of all packets from rcceiver streams since
the network-system's existence was first inferred.

the sum of bytes in the data portion of the packets
from receiver streams since the network-system’s
existence was first inferred.

a list of numbers indicating the number of times
cach string being searched for has been matched in
streams from receiver hosts.

the total number of connections which have been
started in the last 7 minutes.

the current number of connections which exist on
the network

the current number of hosts which are known to
exist on the network,

4.1.4 Productions

The productions for the different complex objects are described below:

STREAM -»> PACKET
where for all p e PACKET

(STREAM.src_addr = p.sre_addr,

STREAM.dst_addr = p.dst_addr,
STREAM . protocol = p.protocol
STREAM src_port = p.src_port,
STREAM.dst_port = p.dst_port)

33

CONNECTION -» STREAM
where for all s € STREAM

(CONNECTION. protocol = s.protocol,
{((CONNECTTON initiator_addr = s.src_addr,
CONNECTION.receiver_addr = s.dst_addr,
CONNECTION. Initiator_port = s.8f¢_port,
CONNECTION receiver_port = s.dst_port)
or (CONNECTION. initiator_addr = s.dst_addr,
CONNECTION.receiver_addr = s.ste_addr,
CONNECTION anitiator_port = s.dst_port,
CONNECTION receiver_port = s.src_port)))

HOST -> CONNILCTION
where for all ¢ € CONNECTION
{(HOST.host_addr = c.initiator_addr)
or (HOST host_addr = c.receiver_addr))

SERVICE-SET -» CONNECTION
where for alh ¢ € CONNECTION
{SERVICE.protocol = c.protocol,
SERVICE.service_id = ¢.service)

NETWORK-SYSTEM > HOST SERVICE-SET

4.1.5 Attribute Functions

Certain attributes of an object are assigned by the monitor system when the object s
created. The functions to determine the values for the attributes which are not assigned by
the monitor are provided below. The functions for each attribute of each complex object

follow the complex object’s production description.

STREAM -> PACKET:
STREAM start_time = min {p.time | p € PACKET)
STREAM last_update_time = max {p.time | p € PACKET]
STREAM.1o1al_packets = IPACKETI
STREAM . total_bytes = Y pnum_of_bytes
p e PACKET
STRIEAM string_matcher_list = KMP(STREAM.string_matcher _list,p.list_ol_bytes}

CONNECTION -> STREAM:

CONNECTION. start_time = min (s.start_time | s ¢ STREAM}
CONNECTION last_update_time = max {s.last_update_time {s ¢ (STREAM))
CONNECTION pkts_from_initiator = s.total_packets

where CONNECTTON. initiator_addr = s.src_addr
CONNECTION bytes_{rom_initiator = s.total_byles

where CONNECTION.initiator_addr = s.src_addr
CONNECTION.strs_malched from_initiator = s.string_matcher list

where CONNECTION. initiator_addr = s.src_addr
CONNECTION.pkts_from_receiver = s.lotal_packets

where CONNECTION receiver_addr = s.src_addr
CONNECTION. bytes_from_receiver = s.total_bytes

where CONNECTION receiver_addr = s.src_addr
CONNLECTION . strs_matched from_receiver = s.suring_matcher list

where CONNECTION receiver_addr = s.src_addr

HOST -» CONNECTION:

HOST.pkis from_host = ¥ c.pkts_from_initiator + 3 c.pkts_{rom_receiver
ceCl ce C2

HOST.byies [rom_host= Y c.bytes from_iniliator + Y, c.bytes_from_receiver
ceCl cc C2

HOST strs_matched_from_host =
Y e.strs_matched_from_initiator + Y c.strs_matched_{rom_receiver

ceCl coc C2
HOST.pkts_to_host = Y c.pkis_{rom_initiator + ¥ c.pkis_from_receiver
ceC2 ceCl
HOST.bytes_to_host = Y c.bytes_from_initiator + , c.byles_from_receiver
cec C2 ceCl

HOST.strs. matched_to_host =
> c.strs_matched_from_initiator + ¥ c.strs_matched_from_receiver
ceC2 ceCl
HOST.n_min_connection_num_from = [C3 |
HOST.current_connection_num_from =14 |
HOST.n_min_connection_num_to =1 C5 1
HOST current_connection_num_to =1Co6 |
where C1 = {¢ ¢ CONNECTION' | c.initiator_addr = HOST.host addr}
and C2 = {¢ ¢ CONNECTION'| c.receiver_addr = HOST.host_addr}
where C3 = {¢ € CONNECTION' | ((CURRENT_TIME - ¢.last_update_time) <= n_min} &
(c.initiator_addr = THOST host_addr)}
where C4 = {¢c € CONNECTION | c.initiator_addr = HOST.host_addr}
where C5 = {¢ € CONNECTION' [{(CURRENT_TIME - c.last_update_time) <= n_min) &
(c.receiver_addr = HOST.host_addr)}
where C6 = (¢ ¢ CONNECTION 1 c.receiver_addr = HOST.host_addr}
Note: CONNECTION is the set of all elements which have ever been a member of
CONNECTION,

SERVICE-SET - CONNECTION:

SERVICE-SET.total_pkis_from_initinlor =) c.pkts_from_initiator
ce CI
SERVICE-SET.ow!_bytes_from_initintor = Y c.bytes_{rom_initiator
ce C1
SERVICL-SET.strs. matched from_initator = Y c.strs_matched_from_initiator
ce 1
SERVICE-SET.total_pkts_from_recciver = 3 c.pkts_from_receiver
ceo Cl
SERVICE-SET.tolal_byles_from_recciver = 3, c.bytes_[rom_receiver
ce Cl
SERVICE-SET.strs_matched, from_receiver= Y c.strs_maitched from receiver
cc C1

SERVICE-SET.n_min_connegtion_num =1 C2 |
SERVICE-SET current_connection_num = | CONNECTION |
where Cl = CONNECTION'
and C2 = {c ¢ CONNECTION' { {CURRENT_TIME - ¢ last_update_time) <= n_min]

NETWORK-SYSTEM -> HOST SERVICE-SET:
NETWORK-SYSTEM. total_pkts_from initiator = Y, s.pkits_from_initiator

se Sl
NETWORK-SYSTEM. ol _bytes,_from_initialor= ¥, s.bytes_from_initiator
s S
NETWORK-SYSTEM. strs_matched _from_initiator = Y s.str_matches_from_initiator
s e S
NETWORK-SYSTEM tolal, pkts_iroun, receiver = 3 s pkts, from_receiver
so Sl
NETWORK-SYSTEM total_bytes [rom_receiver= ¥, shyles_{rom_receiver
s ¢ 51
NETWORK-SYSTEM sirs matched from receiver=) s.str_matches rom_receiver
s 51
NETWORK-SYSTEM.n min_conncction num = Y s.n_min_connection_num
s € SERVICE-SET
NEETWORK-SYSTEM corrent_connection num = ¥ s.corrent_connection_nusm

s ¢ SERVICE-SET
where S1 = SERVICE-SET
4.2 Detecting Intrusive Behavior
As was mentioned earlier, an 1solated behavior-detection function is currently an
arca of important study. A generic classifier such as the statistical anomaly detector
component of the IDES system [15] which could be used {or all object types, would be a
nice solution; however, this ignores possibly important semantic information about the

individual object types. Instead of using a single gencrie statistical tool to implement the

36

isolated behavior-detection functions, 1 have concentrated on a behavior-detection tool for
only a single object type: connections.

I have chosen to build the isolated behavior-detection function for connections out
of three separate components: an anomaly detector, an attack model, and an expert system.
Fach component produces a warning valuc between zero and ten, and the final warning
value is simply a weighted average of these results.

Initially the weights for all three components were equal; however, through
experimentation and use I found that the weight for the expert system component should be
much higher than that of the anomaly detector component; the expert system produced
much better results in isolation than did the anomaly detector. A method to determine the

correct balancing for these weights will be a part of future research.

4.2.1 Anomaly Detector Component

The anomaly detection component of the isolated behavior-detection function for
connections is based on the concept of data paths (see 1.1.2). A warning value for each
connection is based on the probability of observing a connection on that data path,
<sre_host, dst_host, service>. I the probability of observing such a connection is high,
then the warning value would be low, and conversely, if the probability of observing the
connection is low, then the wamning value would be high.

The probability of observing a connection on the data path is based on whether a
connection was observed on the data path on each of the 'n' previous days. This function,
taken from {15], is defined as:

n
EWkZ‘bk
k=1
r- n

Yo
kz1

37

where
« k is the index of days. k =1 is the most recent day, and k = n 1s the oldest day for
which data is known.
« Wi is an indicator function that returns 1 if there was a connection on the data path
for the kth day, and it returns 0 otherwise.
+ b is the half-life of the data paths. For the NSM implementation, T used a half-life
of seven days (a single week), sob = 1/7 = (.143.

The choice of a half-life value was arbitrary; however, a method to calculate a half-life
which will result in the most accurate probability prediction will be a part of future

rescarch.

4.2.2 Attack Model Component

The attack model component is based in part on the work by Gihan Dias [7]. This
work tries to determine the probability of a connection being an attack based on the hosts
and network service involved.

First the attack model assigns to every host a value between zero and ten to
represent a security level for the host. A host with a security level of zero is perceived to be
very insecure, and a host with a security level of ten is perceived to be very sccure.
FFurthermore, the model assigns to every network service two numbers between zero and
ten representing the level of authentication required to use the service and the capabilities of
the service.

The attack model assumes that an attack will more likely be from an insecure host to
a secure host than from a secure host to an insecure host. The model also assumes that an
attacker would prefer to use a service with little authentication requirements (e.g. password

requirements) but strong capabilitics. These are captured by the equation:

38

(10 + dst_sec_level - src_sec_level) + (10 + cap - auth)
4

Warn_level =

where
« dst_sec_level is the security level of the destination host,
+ src_sec_level 1s the security level of the source host.
» cap 1s the capability value of the service used.

« auth 1s the authentication required by that service,

4.2.3 Expert System Component

The expert system component of the attack model 1s based on the tell tale signs |
regarded that someone being intrusive might leave behind. For example, if the person
generated a high number of "Login incorrect” or "Permission denied" messages, the expert
system would increase the warning level of a connection. Examining password files,
attempts at exploiting known operating system flaws (e.g. accessing the password file with
the trivial file transfer protocol service, tftp), and attempts at trying default accounts and
passwords (e.g. trying the guest account with password "guest™) would also increase the
warning level of & connection.

Despite the rule base being very small (on the order of a dozen rules), the expert
system component of the NSM proved to be most successful at both detecting actual

intrusions and reporting the fewest false positives.

39

Chapter 5

Model Results

An implementation of the model presented in chapter 4 has been tested at the
Unmniversity of California at Davis for several months. This implementation, calied the
network_analyzer, is part of a suite of tools called the Network Security Monitor (NSM).
The other components of the NSM (network_recorder, transcript, and playback) are
discussed in {10].

Section 5.1 discusses the early successes from the first few months of testing.

Section 5.2 discusses some of the knowledge gained which will help guide future research.

5.1 Results

I ran the NSM (including the network_analyzer) on the Electrical Engineering and
Computer Science LAN at UCD for a period of approximatcly three months. During this
timc over 400,000 connections were identified and analyzed by the NSM, and among these
connections, over 400 were 1dentified as being associated with intrusive behavior. If the
connections for each day were ordered by the warning level assigned to them by the
network analyzer, the expected position for the identified intrusive connections would be
in the top 0.5% of the connection. In other words, if there were 3500 connections
analyzed in one day, approximately half of the connections associated with intrusive
behavior could be found by examining only the top seventeen most suspicious connections.

Intrusive connections were associated with over half of the hosts on the LAN.
These hosts included a variety of hardware and operating system platforms. The intrusive
activity ranged {rom simple doorknob attacks (trying default passwords on machines) to
complex attacks requiring the coordinated use of several services and several hosts. For

cxample, one attack required the tftp, finger, telnet, and login services and two difterent

40

target hosts for a complete success. Roughly half of the intrusive activity was associated
with outsiders and half with insiders.

ffor comparison, of the intrusive activity associated with the 400 connections
identified correctly with the aid of the NSM, only eight atternpted logins were detected by
system administrators or the user community. Thus, for every intrusive connection

detected by administrators and users, roughly forty went undetected.

5.2 Lessons l.earned

The testing, of the model on an actual network provided me with concrete results
which help substantiate the modcl as well as determine areas of future research. First, 1
wanted to examine 1f the profile of network connections grew unbounded. Figure 6 shows
the size of the profile (determined by the number of data paths present) for a period of
slightly more than three weeks. As can be scen, the profile size reached a size limit after a
little more than a week of analysis, so experimental results show that network activity does
not produce an unbounded profile.

Sccond, T wanted to determine how useful the detection of anomalous activity was
at detecting intrusive activity in connections. Unfortunately, strict anomaly detection was
shown to be a poor means of intrusion detection. Mail connections, which frequently were
madc to very unusual sites, tended to dominate the connections which were reported as
possibly associated with intrusive activity; however, telnet connections made up the
majority of actual intrusive connections. Figure 7 shows the average probability of
occurrence calculated by the network_analyzer for connections associated with a number of
nctwork services. This graph shows the average mail connection (smtp) had a lower
average probability of observation than did the average telnet connection. In other words,
mail connections tended to be more anomalous than telnet connections, In the future, effort
will be made to normalize anomalous activity for services based on the rate of anomalous

activity generated 1 the past.

profile size:
of data paths

Avg prob. of

observation

4000 —

3000 -1

2000

1000 —-

1.00 -4

i

0.75

0.50

0.25 -

(.00

days of monitoring

Figure 6

SCTVICE

Figure 7

41

Chapter 6

Conclusions and Future Research

As government reports, recent books, and the popular media have stated, our
compulters systems are vulncrable to attack. Authentication and access control mechanisms
to prevent intrusive activity have not been wholly suceessful, so a second layer of defense,
intrusion detection, is needed. UCD took on the task of developing an intrusion detection
system capable of simultancously detecting intrusive behavior on many hosts running many
versions of operating systems. To solve this problem, 1 developed a model to detect
behaviors in dynamic and complex systems. [then mapped the interconnected computing
environment into this model, and defined an isolated behavior-detection funcuon to detect
intrusive behavior in connections.

Results from a prototype of the model appear very promising. The NSM detecied
nearly 40 times the number of connections associated with intrusive behavior than did the
system administrators and user community.

Despite these positive results, however, there are a number of issue brought up in
this thests which require further research. First, a rigorous method for determining the
hall-life of data path information is necded (section 4.2.1). One possible solution is 10 use
a Newtonian search method to minimize the absolute value of actual probability - calculated
probability. Another 1ssue which 1 did not address 1s the possibility that the data paths for
different services may have a different half-lifes.

A second area in need of further research is the expert system component of the
1solated behavior-detection function for connections. The rule base should be expanded to
capture all known specific attack methods, and if possible, generalized rules to detect new
and unknown attacks should be designed.

A third area of research is a method for choosing the weights used to combine

different components of the isolated behavior-detection {unction for connections.

Questions such as whether the calculated warning values of the components arc
independent or not must be addressed.

A fourth arca of research is in the area of generalized isolated behavior-detection
functions. I mentioned earlier that 1 had my doubts whether a gencralized function was
capable of being successlul; however, I made no attempt to prove or disprove this. Future
research could include the testing of different intrusion detection algorithms by using them
as isolated behavior-detection functions for different objects and comparing their
performances. |

Finally, a fifth arca of research involves the testing for properties of system
language definitions. Since the SDL, a system language definition, and a snapshot of a
system are related to a traditional programming language hierarchy (see figure 1), many of
the same questions about programming languages can be asked of my system. Ior
example, can a language be shown to be complete? That is, can all the atributes for all
objects always be caleulated? Or, are the models of a system (snapshots of the system)
always unique? This is similar to the question of whether a parse tree for a programming
language is unique. Can a system language definition be recursive? For example, are there

restrictions which would allow the production rules

A->B
B->A

to still produce complete results?

[}

0.

9,

10.

11.

12.

13.

14.

44

References

(3.V. Bochmann, "Semantic Evaluation from Left to Right,” Communications of
the ACM, vol. 19, no. 2, pp. 55-62, I'eb. 1976.

D.E. Comer, Internetworking With TCP/IP, 2nd ed., Englewood Cliffs, New
Jersey: Prentice Hall, 1991.

D.E. Denning, "An Intrusion Detection Model,” IEEE Trans. on Software
Engineering, vol. SE-13, no. 2, pp. 222.232, Feb. 1987.

D.E. Denning, a conversation with 1., Todd Heberlein, December 6, 1990

P.J Denning, ed. Computers Under Attack: Intruders, Worms, and_Viruses. New
York: ACM Press, 1990,

Department of Defense Trusted Computer System_Evaluation Criteria, Dept. of
Defense, National Computer Security Center, DOD 5200.28-STD, Dec. 1985.

G.V. Das, K.N. Levitt, B. Mukherjee., "Modeling Attacks on Computer Systems:
Evaluating Vulnerabilities and Forming a Basis for Attack Detection,” Technical
Report CSE-90-41, University of California, Davis.

C. Dowell and P. Ramstedt, "The COMPUTERWATCH Data Reduction Tool,"
Proc. 13th National Computer Security Conference, pp. 99-108, Washington,
D.C., Oct 1990.

D.B. Guralnik, ed. Webster's New World Dictionary, (Simon and Schuster,
19800,

L.T. Heberlemn, B, Mukherjee, KN, Levitt, . Mansur., "Towards Detecting
Intrusions in a Networked Environment,” Proc. I4th Department of Energy
Computer Security Group Conference, May 1991,

L.T. Heberlein, G.V. Dias, K.N. Levitt, B. Mukherjee, J. Wood., "Network
Attacks and an Fthernet-based Network Sceurity Monitor," Proc. [3th Depariment
of Encrgy Computer Security Group Conference, pp. 14.1-14.13, May 199(0.

L.T. Heberlein, G.V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, D. Wolber., "A
Network Security Monitor,” Proc. 1990 Symposium on Research in Security and
Privacy, pp. 296-304, May 1990.

B.W. Kernigan, D.M. Ritchie,, The C Programming lLanguage, 2nd ed.
Englewood Cliffs, New Jersey: Prentice Hall, 1988.

D.I Knuth, "Semantics of Context-Free Languages,” Math Systems Th. 2 (1968),
127-145. Correction appears in Math Systems Th.5 (1971),95.

T.E. Lunt, et al., "A Real Time Intrusion Detection Expert System (ID1S),” Interim
Progress Report, Project 6784, SR1 International, May 1990,

16.

17.

18.

20).

45

U. Manber, Introduction To Algorithms: A Creative Approach, New York:
Addison-Wesley Publishing Company, 1989

Plato, The Republic of Plato, Trans. B Jowert. 1892.

M.M. Sebring, et al., "Expert Systems in Intrusion Dectection: A Case Study,”
Proc. 11th National Computer Security Conference, pp. 74-81, Oct. 1988,

S.L. Smaha, "Haystack: An Intrusion Detection System," Proc. [EEL Fourth
Aerospace Computer Security Applications Conference, Orlando, L, Dec. 1988,

S.R. Snapp, J. Brentano, G.V. Dias, T.L. Goan, T. Grance, L.T. Heberlein, C.
o, K.N. Levitt, B. Mukherjee, D.L.. Mansur, K.L. Pon, S.E. Smaha_, "Intrusion
Detection Systems (IDS): A Survey of Existing Systems and a Proposcd
Distributed 1DS Architecture,” Technical Report CSE-91-7, University of
California, Davis.

W.T. Tener, "Discovery: an expert system in the commercial data security
environment," Security and Protection in Informations Systems: Proc. Fowrth 11O
TC11 tnternational Conference on Computer Security, North-Holland, May 1988,

11.S. Vaccaro and G.E. Liepins, "Detection of Anomalous Computer Session
Activity," Proc, Symposium on Research in Security and Privacy, pp. 280-289,
Oakland, CA, May [989.

J.R. Winkier, "A Unix Prototype for Intrusion and Anomaly detection in Sccure
Networks,” Proc. 13th National Computer Security Conference, pp. 115-124,
Washington, D.C., Oct. 199().

46

Appendix A

Network Security Monitor

a brief description

6 June 1991

L. Todd Heberlein

Installation
To install NSM from the tar file, enter the command
tar xvf nsm.tar
11 the NSM 15 distributed on tape, enter the command
1ar xv
Fither of the commands will produce a new directory called NSM in your local directory.
Under this directory are four more directories: analysis, bin, src, and tmp. 1f the computer
vou are using is a Sun-4 architecture, the binary programs should be fine. However, if
vou are running on a Sun-3, or if you simply want to recompile the programs, you will
have to enter each of the program directories under NSM/src and remake the programs. To
remake a program {for a Sun-4, type the command
make
If you want to run on a Sun-3 architecture, modify the makefile by changing the -DSUN4
option in the CFLAGS to the -DSUN3 option.
Note: the program network capiure will not run on the computer unless the

Networking Tools and Programs software installation option was installed {(do a man on

etherfind for more information). Basically, if etherfind works on your computer, so will
nerwork_capture.

The configuration file, NSM/analysisiconfig file, will have to be modified to reflect
vour site's internet addresses and dail-up ports. For more information on this file, see the

section File Descriptions.

File Descripfions
This section discusses the files used by the NSM. At the end of the appendix is a

figure providing a diagram of the file structure.

47

NSM
(type-directory): NSM 1s the root dircctory for the NSM tools. Underneath the
NSM are four directories called analysis, bin, src, and tmp.

NSMianalysis
(tlype-directory): analysis is the directory from which the user witl do all of his or
her work. This directory contains the data files which direct the the various
programs of the NSM to do their work. Results from analysis (e.g.. connection
files, profile files, and transcript files) are stored here as well,

NSM/ibin
(type-directory): bin is the directory for all the executable programs for the NSM.
The directory contains the programs analyze, network_capture, top _con, transcript,
and warn sort. This directory is static and should not change unless one of the
programs is recompiled.

NSMisrc
(type-directory): src is the directory for the source code for all the executable
programs in the NSM/bin directory. The source code for each exccutable program
15 in its own directory. The directory names are the same as the executables:
Analyze, Netwaork _capture, Top con, Transcript, and Warn_sort.

NSM/itmp
(type-directory): tmp is the directory for the network traffic data files. These log
files will be of the format filenameY YMMDD.HH; where YY is the year, MM s the
month, DD is the day of the month, and HH is the hour of the day. The choice for
filename can be changed in the config file.

NSM/analysisicon_count file
(type-text data file): con_count file contains a single number representing the total
number of connections analyzed by the analyze program. This number will be
initially set to zero. If, for example, analyze was run on three days of which 4000,
4010, and 4020 connections were analyzed , then con_count file would contain the
number 4000 after the first day, 8010 after the second day, and 12030 after the
third day.

Lixample:
12030

NSMlianalysisiconfig file
(type-text data file): config file is the most important data file in this directory, and
almost every program of the NSM uses it. config file contains the information
describing the ocal site's internet addresses (the class B networks for the site), the
local dial-up ports, the place to store the data files (e.g.. NSM/tmp), and how often
o swilch data files (typically it is on every hour).

Lxample:

Hnum_of local_class B_ncts 1

felass B net 128.120.0.0
fnum_ ol _ltocal_gateways 4
fflocal_pgateway 128.120.2.251
Hlocal_galcway 128.120.2.253
#local_paleway 128.120.2.254
Hengr-dnet 1 128.120.59.29

#fouput_ root {ile_name Junp/log

#minutes between_files 20

Hach line contains two pieces of information: a comment and a value. The comment
has 1o be a single "word” (I read it in with a single scanf(...%s...)). The values in
this file can be read as follows:

#num_of local_class_B_nets =1 - This number indicates how many class B
networks are at the local site.

#iclass. B net = 128.120.0.6 - There will be n lines of this {form, where the
number n is given in the previous line (in this case, 1). This value gives the
mternet address of the local class B network. In this case it is 128.120.% *,
Place zeros, where the stars are. Any packet which has a source or
destination address will be considered a foreign packet.

#inum_of_local_gateways = 4 - This number indicates how many local
paleways or dial-ups therc are. Any packet from/to these dial-up addresses
1s considered to a foreign packet.

#iocal _gateway = 128.120.2.251 - This is an internet number of a dial up

#local_gateway = 128.120.2.253 - This is an internct number of a dial up

#Hlocal _gateway = 128.120.2.254 - This 1s an internet number of a dial up

#engr-dnetl = 128.120.59.29 - This is an internct number of a dial up

#output_root_file name = ../tmp/log - This is the directory where the network
traffic will be stored (../tmp) and the root file name for the data files (log).

#minutes_between_files = 20 - This indicates that the file name where traffic is
stored will be changed every twenty minutes. 1t will be aligned on the hour.

NSMianalvsisiconnections file
(type-text data file): connections file is a log file of all the connections observed by
the last run of the program analyze. The first line of the file specifies the number of
strings scarched for by analyze. The following lines are the strings searched for.
After the strings are the actual logs of connections ordered by when they were
closed (or terminated). Each log is on a single line, but each line typically wraps
around three line on a normal 80 column display.

Fxample:
7
login: guest
Login incorrect
dacron;
passw
logan: root
Permission denied
CWD ~ROOT
218 267389 8944 5,778 10.000 10.000 128.120.2.251 128.120.57.60 6 25858
23 telnet Mon-Jun-03-18:12:03-1991 Mon-Jun-03-18:12:38-1991 35
51 40 34 144 O-rec-1 1-rec-2
199 267370 8.944 5778 10.000 10.000 128.120.2.251 128.120.57.14 6 10498
23 telnet Mon-Jun-03-18:10:09-1991 Mon-Jun-03-18:10:36-1991 27
126 93 71 278 O-rec-1 l-rec-5
119 267290 8 944 5.778 10.000 10.000 128.120.2.251 12%.120.57.67 6 11020
23 telnet Mon-Jun-03-17:59:48-1991 Mon-Jun-(13-18:00:22-1991 34
109 81 70 243 ()-rec-3 1-rec-3

Although this filc represents a connection f{ile which has actually been sorted by
waring value, the information in this data file 1s exactly the same as the original
connections.file

49

The first line of the file contains a number indicating the number of strings which
were searched for while processing this log file. In this case, seven strings were
used. Following the number are the actual strings used. These strings are indexed
from O to (n - 1) (in this case, 0 10 6). Therefore the string
login: guest

has the index number O, and the string

CWD ~ROOT
has the index number 6.

Following the strings are the actual connection logs. The first connection log,
although it is one line, is wrapped across three different text lines. The information
in this first record can be interpreted as follows:
conncction index for this particular processing = 218
connection index for all time = 267389
composite warning value = 8.944
attack model warning value = 5.778
anomaly detection warning value = 10.000
expert system warning value = 10.000
address of the host initiating the connection = 128.120.2.251
address of the host receiving the connection = 128.120.57.60
protocol of service (6 - TCP, 17 - UDP) =6
port used by initiating host = 25858
port used by receiving host = 23
service name = telnet
start time of the connection = Mon-Jun-03-18:12:03-1991
ending time of the connection = Mon-Jun-03-18:12:38-1991
duration of the connection in scconds = 35
number of packets initiator sent = 51
number of bytes initiator sent =40
number of packets receiver sent = 34
number of bytes receiver sent = 144
string match: (0-rec-1) [This states that the string index 0, "login: guest,”
was sent by the receiving host (tec -> receiving host, init -> initiator
host), and 1t was matched 1 time]
string match: (1-rec-2) [This states that the string index 1, "Login
incorrect,” was sent by the receiving host 2 times]

NSM/ianalysisihost file

(type-text data file): host.file contains a list of internet addresses and security level
numbers. The data file is usually empty; however, 1t 1s possible to specify the
security levels (between O and 10) of individual hosts. A telnet from a low security
machine 1o a high security machine will be considered more suspicious than a telnet
{rom a high security machine to a low security machine. This is used by the
program analyze to calculate the attack model portion of the warning value. This
file can be empty. Any local host not seen 1n this file will be given the default
security level of 3, and any foreign host not seen in this file will be given the default
security level of L.

Example:
128.120.57.1 5
128.120.57.117
128.120.57.118
128.120.57.119
128.120.57.120
128.120.57.121

LA Lh D OO0 0T

50

128.120.57.122
128.120.57.130
128.120.57.131
128.120.57.132

o0 IS W Ln

In this example the host 128.120.57.1 is assigned a security level of 5, and the host
with the internet address 128.120.57.117 is assigned a security level of 8.

NSMianalysisiprofile file
(type-text data file): profile file contains a record of observed past network activity.
It is used by the program analyze to calculate the anomalousness of an observed
connection. profile file will inttially be empty.

Lxample:

128.115.1.1 128.12057.1 6 25 0 32
130.86.71.1 128120571 6 79 0 1
130.86.71.2 128.120.57.20 6 513 1 255
128.228.1.2 128.120.57.20 6 25 1 255
128.118.56.2 128.120.57.20 6 25 0 111
137.39.1.2 128.120.57.20 6 25 0 48
120.86.71.2 128.120.57.20 6 514 1 136
129.245.1.2 128.120.57.20 6 25 0 33
129.10.1.2 128.120.5720 6 25 0 o7

The first line of the profile represents a data path from the host 128.115.1.1 to
128.120.57.1 by the TCP/IP protocol (6 = TCP, 17 = UDP) and the service port
25 (electronic mail). The O indicates that therc were no connections on this data
path on the most recent day. The last number, 32, is translated to a bit list
(O0100000). A one indicates that a connection was observed on this data path
during that day. The most recent day is represented by the most significant bit (left
most), and the furthest day remembered is represented by the least significant bit
(right most)

NSMianalysisistrings file

(type-text data file): strings.file is perhaps the most uscful file for detecting
intrusions. swrings file contains a list of strings that the program analyze will scarch
for in the network connections. Tor example "login: guest” can be searched for in
the network connections. If it is matched, it usually implies that somcone tried to
login as guest. A number of stings are scarched {or (e.g.. "Login incorrect"), and
the results of this search 1s used by analyze to calculate the expert system
component of the warning value; however, the search for other strings 1s done by
simply placing a new string at the end of the list.

Lxample:
login: guest
Login incorrect
dacmon:
passwd
login: root
Permission denied
CWID ~ROOT

To find the results of a string match, examine thc content of the file
connections file. For example to find all occurrences of the string "Permission
denied,” string index 5, simply grep for a occurrences of the strings "S-rec™ and
"S-ree.” For example:

a1

egrep "S-reclS-imt” connections. file

NSM/ianalysisitep file
(type-text data file): tcp file contains a list of known tep service ports and names.
Also associated with cach tep service are two numbers representing the service's
capability and authentication requirement {each number has a value between (0 and
10). For cxample, telnet has strong capabilities and strong authentication
requirements (a password). The capability and authentication requirement values
arc used by analyze to determine the expert system component of the warning

value.

Example:
7 echo 1 1
9 iscard 1 1
11 systat 1 1
13 daytime 1 1
15 netstal 1 1
20 fip-data 7 7
21 ftp 7 3
23 telnet 10 3
25 smip 4 3
37 tme 1 1
43 whots 1 1
53 dornain 1 1
101 hostnames 1)
111 Sunrme 8 3
77 I ; ;
79 finger 4 I

In this example, the first service occupies port number 7, its name is "echo,” its
capabilities are listed at a strength of onc, and its authentication is also listed at a
strength of one.

NSM/analysisiudp file
(type-text data file): udp file contains a list of known udp service ports and names.
Also associated with each udp service are two numbers representing the service's
capability and authentication requirement (cach number has a value between 0 and
10). For example, uip has strong capabilities, but it has very weak authentication
requirements {nonc). The capability and authentication requirement values are used
by analyze to deterinine the expert system component of the warning value.

Example:
53 domain 1 1
111 SUNmK 7 7
69 tftp 8 1
123 nip 1 1
512 biff 1 1
513 who 1 1
514 syslog 1 1
517 talk I 1

In this example, the first scrvice occupies port number 53, its name is "domain," it
has a capability strength of one, and it also has a authentication strength of one.

NSMibinlanalyze
{(type-binary program): analyze is the most important of the NSM programs; analyze
is the program which actually detects and analyzes the connections in the network

52

traffic. This program requires as input the starting year, month, day, and hour of
interest in network traffic data files and the total number of hours to search for data.
The output of this program is the data files connections file, profile file, and
con_count file. The previous connections file, profile file, and con_count file will
be overwritten. In addition to the input mentioned above, analyze uses the
following data files: con_count file, config file, host file, profile file, strings file,
tep file, and udp file.

Example:

./binfanalyze 91 63024
This command will analyze the data starting at 1991, June 3rd, and the Oth hour
(midnight), and it will analyze 24 hours worth of data.

NSMibininetwork capture

(type-binary program): network capture pulls the network traffic off the network
and places the packets into the data files in the directory NSM/tmp. Only a specific
portion of the network traffic is recorded-the traffic between local hosts and hosts
off site and the traffic to and from local dial-ups. Currently no FTP data is stored.
The program has no input. The output are the log files in the tmp directory.
network capture uses the information in config file to determine which traffic to
capture and where to store it

Example:
../bin/network_capture
That is it.

NSMibinttop con
(type-binary program): fop con takes a file of connection logs and creates a script
ftle which when exccuted will create transcript files for the first n connections. The
format is "top con input file output file n." input file is the name of the
connection log file (a file such as connections file); output_file is the name of the
new script {ile; # 1s the number of connections for which transcripts will be created.

Example:

./binftop_con warn91-6-3 top-10 10
This will take a connection file called warn91-6-3 (same format as connections.file)
as input, and it will create a shell script file called top-10 which will include the
commands to generate transcript files of the first 10 connections in the file warn91-
6-3. To execute this shell script, simply type "top-10."

NSM/ibinltranscript

(type-binary program): franscript takes a connection file and a connection number as
input, and it creates two transcript files (one for the input stream and one for the
output stream) for the that connection. The names for these transcript files will be
connection_file_name.number.init and connection_file name.number.dest where
connection_file name is the name of the connection {ile supplied as input and
number is the connection number. The file ending in init 1s the data sent by the host
initializing the connection, and the file ending in dest is the data sent by the host to
which the connection was made.

Example:

./bin/transcript warn91-6-3 199
This will take the connection file named warn91-6-3 and look for connection index
number 199 in it. When it finds this particular connection log, it will generate two
transeript files (warn91-6-4.199.init and warn91-6-3.199.dest) representing the

data flowing {rom the host which initialized the connection and the data from the
destination host,

NSMibintwarn_sort
(type-btnary program): warn_sort takes as input an unsorted connection file and
outputs a sorted (by warning value) connection file.

Example:

.Jbinfwarn_sort connections.file warn91-6-3
This example will take the connection log file called connections.file and generate a
connection log file sorted by warning value called wam91-6-3.

NSM/srciAnalyze
(type-directory): Analyze is the directory for all the source code for the program
analyze. To re-make the program analyze, simply type the command "make” from
inside the Analyze directory.

NSM/srciNetwork capture
(type-directory): Nerwork capture is the directory for all the source code for the
program network capiure. To re-make the program network_capture, simply type
the command "make" from inside the Network_capture directory.

NSMisrc/Top con
(type-directory): Top con is the directory for all the source code for the program
top_con. Vo re-make the program fop_con, simply type the command "make" from
inside the Top _con directory.

NSM/srel/Transcript
(type-direciory): Transcript is the directory for all the source code for the program
transcript. To re-make the program transcript, simply type the command "make”
from inside the Transcript dircctory.

NSMisrciWarn_sort
(type-directory): Warn_sort is the directory for all the source code for the program
warn_sort. To re-make the program warn_sort, simply type the command "make”
from inside the Warn_sort directory.

NSMItmpilogY YMMDD HH
(type-binary data file): logY YMMDD.HH is the general form for the binary data
files for the network traffic. For example, log910530.00 is the network traffic for

1991 May 30 and the 0 hour (e.g.. midnight until 1:00 am). The name "log" can
be changed by modifying the data file analysis/config file.

Basic Operations

This scetion describes the simple operations needed to keep a moderate handle on
network security at a particular site. I assume that a single person (or perbaps a small
group of people) will be in charge with examining the network activity regularly for
possibly intrusive data.

The first step is to start the collection of data. Assuming the config.file 1s set up
correetly (see Installation and File Descriptions: analysis/config.file), the collection of
data is started simply by typing the following command (as root) from the analysis

directory:

54

./bin/network _capture

This command will start the collection of data. It should run continuously, and if
desired, this process can be placed in the background. The CPU overhead of this process
is barely noticeable; however, the disk usage can be expensive. Keep an eye on the disk
space. Finally, I strongly recommend that the data be kept on a local hard disk; shipping
the data across the network (o another disk will reduce your network bandwidth.

The second step 1s to analyze the data. The following list of commands, which can
be put into a shell script (e.g.. my_shell _script), are all that is needed to produce transcript

files for the days ten most intrusive looking connections:

./binfanalyze 91 63024

Joinf/warn_sort connections.file warning.list
./binftop_con waming.list top-10 10

top-10

The execution of these commands will produce ten pairs of transcript file of the
fonn warning list.###.1nit and warning.list.###.dest (### will be the connection number).
A security officer need only verify whether these connections are legitimate or not by
examining them with any word processor.

To modify the date to process new data, simply modify the first command. For
example, 1o process the data the next day simply change the first line to:

/binfanalyze 91 6 4 0 24

The following two files are actual transcript files gencrated by the above method for
a particular connection. The first file is the data sent by the destination host back to the
hacker. The sceond file is the data sent by the hacker to the target computer.

First file:
TRANSCRIPT

For connection file: warn91-6-3
and connection index: 218

Initiating host: 128.120.2.251
Destination host: 128.120.57.60
Scrvice: telnet

Start time: Mon-Jun-03-18:12:03-1991
FEnd time: Mon-Jun-03-18:12:38-1991

Warning level: §.944
words matched from initiating host:
words matched from destination host:
Login incorrect 2
togin: guest 1

vy
i

Data {rom destination host

Sun0S UNIX (surya)

{~login: guest
Password:

Login incorrect
login: uauep
Password:

Login incorrect

Second file:
TRANSCRIPT

For connection e warn91-6-3
and connection index: 218

Initiating host: 128.120.2.251
Destination host: 128.120.57.00
Service: telnet

Start time: Mon-Jun-03-18:12:03.1991
End time: Moo-Jun-03-18:12:38-1991

Warning level: 8.944
words matched from imbatng host:
words matched from destination host:
Login incorrect 2
login: guest |

Data from miaton host

{11 {tguest
Fuest
uucp

In summary, the following operations are needed:
./bin/network_capture
my_shell_script
The dates in the shell seript, my_shell script, will have to be changed, but that is the only
modification which is nceded. Since network_capture needs to be only started once, the

only program which needs to be executed on a daily basis is my_shell script.

560

Advanced QOperations
This section describes a few extra operations a security officer may wish to perform
to provide extra security. First, if intrusions are suspected from a particular host, a security
officer may want to {ind all connections from or to that host. This can be accomplished by
simply grep-ing for the host's internet address in the connection file. This will produce all
the connection records associated with that host. TFor example:
grep 141.225.1.2 connections.file
may produce the following results:
2340 267290 8944 5778 10.000 10.000 141.225.1.2 128.120.57.120 6 11020
23 telnet Mon-Jun-03-17:59:48-1991 Mon-Jun-03-18:00:22-1991 34
109 81 70 243 Q-rec-3 1-ree-3
2345 267295 8.944 5778 10.000 10.000 141.225.1.2 128.120.57.121 61235

23 telnet Mon-Tun-03-18:01:00-1991] Mon-Jun-03-18:02:22-1991 82
218 165 140 612 Q-rec-1

This result indicates that there were two connections from 141.225.1.2: connection 2340
and connection 2345, The first connection matched the string "login: guest” three times
and the string "Login incorrect” three times. The sccond connection matched the string
"login: guest” once. To generate the transcript reports for these two connections, simply
lypes

Jbin/transcript connections.file 2340

./binftranscript connections.file 2345

Another operation which might be useful is to scarch for a particular key word or
string. For example, suppose the string "CLASSIFIED" is contained in all classified
documents. To search for such a string in all network traffic, Add the string to the end of
the serings file, ang then process the data with aralyze. I this string is the 8th string in the
file, all occurrences of 1t can be searched for with the command

egrep "7-1nitl7-rec” connections.file
(note that the strings are counted from O to (n-1). Thus the eigth string 1s actually indexed
as string 7). 1f this string was matched in any of the connections, the connection records
will be printed. To retrieve the actual transcript of the connections, use the ../binftranscript
command as in the above example. This 1s a useful exercise to determine what sensitive

data is being shipped off site.

[

analysis

— [

con_count.file

—

conlig.file

connections.file

=1

host.file

— [)

profile.file

— []

strings.file

— []

ep.fi

c

—

udp file

NSM Layout

-

NSM

]

bin

— O

analyzc

top_con

— &

transcript

— &

warn_sort

network_capture

SiC

— [

Top_con

—]

Transcript

— [

Warn_sor

Network_capture

57

-

unp

— [

lop910530.0

— |

l02910530.1

— |]

log910530.2

— []

109105303

